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A method involving intensity correlation measurements is described, which allows for the com-

plete removal of Doppler broadening in the emission of electromagnetic radiation from far-away 

sources that are inaccessible to conventional Doppler-free measurements. The technique, relying 

on a correction to g(2) of order N-1, probes the separation between neighboring spectral lines and is 

also applicable to the elimination of broadening due to collisions (N is the number of emitting 

particles and g(2) is the second-order field correlation function). Possible applications include a 

determination of cosmological parameters from red shifts of gravitationally-lensed quasars. 
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The dependence of the frequency of waves and, in particular, electromagnetic radiation, on the 

velocity of the source with respect to a detector is known as the Doppler effect. For an ensemble 

of atoms or molecules in thermal equilibrium, the random motion adds an inhomogeneous term to 

the natural width of spectral lines, referred to as Doppler broadening, which reflects the spread in 

velocities. Proven techniques to remove or circumvent Doppler broadening are the early methods 

of Doppler-free saturated absorption [1] and two-photon spectroscopy [2], and the more recently 

developed techniques of laser cooling and trapping [3,4]. All these approaches rely on the resonant 

interaction between a set of counter-propagating laser beams and the radiating particles and, as 

such, they are ineffective for studying far-away sources, especially astrophysical objects. In this 

letter, we describe an approach to fully eliminate Doppler broadening, which does not require the 

manipulation of the sources for it involves solely the detection and processing of spontaneously 

emitted radiation. The same procedure also serves to remove broadening due to collisions. 

The method we propose relates to various intensity- and noise-correlation techniques, the list 

of which includes one- and two-photon [5] speckle spectroscopy as well as time-domain applica-

tions such as fluorescence [6] and photon correlation spectroscopy [7], also known as dynamical 

light scattering [8]. Speckles contain information about spatial correlations and have thus been 

used in a variety of applications in microscopy, imaging and studies of surface roughness [9] while 

time correlations give information on, e.g., the diffusion properties of liquids and small particles 

in suspension. Closely related to our proposal is the technique of CARS (coherent anti-Stokes 

Raman scattering) noise-correlation spectroscopy, which purposely uses incoherent light to deter-

mine vibrational-resonance differences [10]. In some way, all these methods trace back to the 

pioneering work of Hanbury-Brown and Twiss who showed that intensity-correlation interferom-

etry allows one to measure the angular sizes of astronomical sources [11]. This and their ensuing 
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work on photon bunching [11] were crucial for understanding the boundary between classical and 

quantum optics and paved the way for the development of closely related techniques to study col-

lisions in nuclear physics [12]. 

Consider a conventional chaotic source, such as a gas discharge lamp, involving M spectral 

lines emitted by N >> 1 identical atoms (or molecules), which radiate incoherently and inde-

pendently of one another. In their respective center-of-mass rest frame, these lines have frequen-

cies 1 },..{ , MΩ Ω+∆ + ∆  where | |i∆ << Ω   for all M lines. We are interested in the intensity fluc-

tuations of a parallel light beam, which propagates in free space with velocity c. We assume that 

1N >>   and that the differences | |i j∆ −∆  ( i j≠ ) are large enough so that collisional and sponta-

neous-emission broadening can be ignored (collisions are considered later). Chaotic sources are 

well described by classical theory wherein the total Doppler-broadened complex electric field of a 

given polarization is given by [13] 
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Here, t is the time and z is the distance from the atomic cloud’s center to the observer;

(1 / )n nv cω = Ω + , where nv  is the line-of-sight component of the velocity of the nth atom, and 

( )n
mϕ  is the phase shift of the nth atom’s mth spectral line. Following the classical model, the am-

plitudes { }mE  are assumed to be deterministic and the same for all the atoms [13]. The { }nω  and 

{ }( )n
mϕ  are taken to be independent and identically distributed random variables that are statistically 

independent from each other and, respectively,  Gaussian (Maxwellian) distributed with mean Ω  

and variance 2σ , and uniformly distributed in [ ]0,2π . Note the fact that, because i∆ << Ω , the 

Doppler shift ( ) /m nv cΩ+∆  is /nv c≈ Ω  so that Doppler broadening does not significantly affect 
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the separation between lines (this is a key point that made possible the first experimental determi-

nation of the Lamb shift [14]). We observe that a full quantum treatment of our problem should 

yield the same results as those of the classical theory since quantum and classical models give 

identical predictions for chaotic sources [13]. 

The intensity-correlation function stems from the product 

 ( )2( ) ( ) / 8 ( ) ( ) ( ) ( )I t I t c E t E t E t E t∗ ∗+ τ = π + τ + τ    (2) 

where I is the cycle-average intensity at a particular point of detection. In the limit N →∞ , the 

only terms that survive involve contributions from individual atoms as all other terms vanish be-

cause of the random relative phases of different atoms [13]. Let 
ϕ
 denote the statistical ensem-

ble average. Then, 
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Simple calculations give ( )2 22 2 4( ) ( ) ( ) ( ) mi
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ϕ
+ τ = ∑ E  (note that the average over the random phases removes 

the t-dependence). Thus, we have exactly 

 ( )
2 2

2 2 2 4 2

1, 1,
( ) ( ) / 8 ( ) mi

m m mm
m M m M

I t I t c N N S e− ∆ τ
ϕ

= =

  
 + τ = π − + τ 
   

∑ ∑ ∑E E E  (4) 

with 
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( )S τ  can be viewed in the complex plane as the result of a random walk where the step length is 

unitary and the random directions are Gaussian distributed. The statistical analysis gives 
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where 
ω

is the average over the frequencies whereas the variance is 

 
2 2

22

2 2 2 2 2 2

Var ( ) ( )

8 ( 1) [ 1 cosh ]sinh ( / 2)

S S S

N N e N

ω ωω

− σ τ

= τ − τ =

− − + σ τ σ τ
   . (7) 

Results for a single trial involving 104 atoms are shown in Fig. 1. Note the large, random vari-

ations of order N for 3στ >


, which reflect the random-walk nature of the sum [15]. For 3στ <


, 

fluctuations are negligible and ( )S τ  is well represented by its large-N average 
2 22N e−σ τ . In this 

range, Eq. (7) gives a standard deviation of order 1.5N , which explains the fact that, up to 3στ ≈ , 

departures from the Gaussian behavior are not apparent in the numerical data. The large-τ fluctu-

ations, with a time scale given by σ-1, mimic those that occur in the intensity [16] as well as the 

spatial fluctuations observed in speckle patterns [9]. The single-trial results for 3στ >


 are con-

sistent with the approximate expressions S N
ω
≈  and 2Var S Nω ≈ , which are valid in the limit 

2 2

1Ne−σ τ << . 

The normalized intensity correlation function, also known as the degree of second-order tem-

poral coherence is defined as 

 (2) 2
0( ) ( ) ( ) /

t
g I t I t Iτ = + τ  (8) 

where 1( ) ( )
t T

f t T f t dt−= ∫  and 0 ( )
t

I I t=  is the average intensity. The integration interval T is 

taken to be much longer than the characteristic time of the intensity fluctuations, 1−σ , so that the 

time average samples all of the values consistent with the ergodic properties of the source. With 

this choice, the average over time, relevant to experiments, is equivalent to the statistical average 

over the phases and frequencies. Thus, we get from Eqs. (4) and (6) 
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Since * 2( ) ( ) n mi i
mn mt

E t E t e e− ω τ − ∆ τ

ω
+ τ = ∑ ∑ E , this expression becomes identical to that from 

the Siegert relation (2) (1) 21 | |g g= +  [17] for 1N >>  ( (1)
0( ) ( ) ( ) /n n t

g E t E t I∗τ = + τ  is the first-

order temporal coherence).  

In the following, we address the question as to how to extract information on the separation 

between lines from measurements of (2)g . In situations where the Doppler broadening is not sig-

nificant, that is, for min | |i jσ < ∆ −∆


 ( i j≠ ), the line separations can be obtained from the behav-

ior of (2)g  for 2 / min | |i jτ < π ∆ −∆


. In such cases or, more generally, for 
2 2

1Ne−σ τ >>   
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Thus, the frequency differences can be gained by Fourier transforming (2) ( )g τ . Since the separa-

tions can more easily be obtained using a conventional spectrometer, however, these cases are not 

very interesting experimentally. Further, it is also clear that the Gaussian factor makes it essentially 

impossible to probe the range 2 / min | |i jτ < π ∆ −∆


 for max | |i jσ > ∆ −∆


.  

To resolve neighboring lines in systems with large broadening, we consider instead the limit 

2 2

1Ne−σ τ <<  (which necessarily implies 1στ >>  and ( )S N
ω

τ ≈ ) and get  
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Note that (2) 1 1 2( ) 1 / 2 cos ( / 2)g N N− −τ ≈ − + δτ  for a doublet with 1 2=E E ; 1 2δ = ∆ −∆  is the spac-

ing between the two lines. Once again, a simple Fourier transform can be used to obtain the line 

separations. Since the average and the standard deviation of ( )S τ  are of the same order, the signal-

to-noise ratio can be enhanced by first filtering the data through a multiplicative-noise removal 

algorithm [18] of the sort commonly used in image processing [19]. 

Equation (11) is the main result of our work. It shows that intensity correlation measurements 

can be used to resolve arbitrarily close neighboring lines in the presence of arbitrarily large Dop-

pler broadening. Concerning practical implementations, two comments are in order. First, we note 

that all the τ-independent contributions to (2)g  and, in particular, the one derived from the domi-

nant background term of order 2N  in Eq. (4) can be experimentally eliminated if one uses a shaker 

controlled by a lock-in amplifier [20]. Second, the condition 
2 2

1Ne−σ τ <<  or, alternatively, 

2ln (2 / max | |)i jN < πσ ∆ −∆


, is easily satisfied in gas discharge tubes since typical densities are 

in the range 1016-1017 cm-3. As an example, consider measuring the Lamb shift in hydrogen 

(~ 1 GHz) using the Balmer α spectrum. For a Doppler width of 2 GHz, we find that this condition 

is met for 6810N << . 

The method we propose also serves to remove collision broadening, which is accounted for by 

a classical field of the form  

 0[( )( / ) ( )]

1, 1,
( )

n
m mi t z c t

n m
n n N m M

E E t e− ω +∆ − +ϕ
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involving time-dependent phases that change randomly and suddenly when a collision occurs [13]. 

Using a procedure similar to that for Doppler broadening, we find 
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It is easy to see that this expression satisfies the Siegert relation for 1N >> . Moreover, since the 

phases become uncorrelated at times much longer than the collision time Cτ , it can be shown that 

the above expression becomes identical to Eq. (11) for 
2 2

C/ 1Ne−τ τ << , provided collisions do not 

change the relative phase of neighboring lines. Therefore, the discussion of the previous para-

graphs applies also to collision broadening. 

In conclusion, we have shown that frequency differences that are much smaller than the Doppler 

or the collision width can be determined using intensity-correlation methods by uncovering a crit-

ical correction to (2)g  of order N-1. Our approach holds promise for resolving fine spectral features 

in situations where gaining access to or disturbing the source is, respectively, impracticable or 

undesirable. One such a case bears on the determination of the expansion of the universe from the 

red shifts of a distant galaxy or quasar, measured at different epochs, as proposed by Sandage and 

Loeb [21,22,23]. To that end, multiply imaged quasars, a result of gravitational lensing, present 

an even better opportunity since light from the same object follows paths of different lengths, 

resulting in effective time delays as large as 100 years [24]. For an acceleration of about 2.5 cm/s-

year, the expected frequency shift of the Ly-α line of hydrogen is several orders-of-magnitude 

smaller than the Doppler broadening and, thus, beyond the reach of a conventional spectrograph. 

The results presented here open up the possibility that expansion-induced shifts could be deter-

mined from measurements of the intensity correlation between multiple images. 
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FIGURE CAPTIONS 

Figure 1 – Single-trial computer simulation of 
2

( ) mi
m

S e− ω ττ = ∑  (black curve, logarithmic scale). 

The horizontal orange line is 410N =  and the dashed gray curve is 
2 22N e−σ τ . Inset: ( ) /S Nτ  vs. τ 

(linear scale). 

  

  



13 | P a g e  

 

FIGURE 1 


