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ABSTRACT

When Carl Sagan observed the Earth during a Gallileo fly-by in 1993, he found a widely distributed surface
pigment with a sharp reflection edge in the red part of the spectrum, which, together with the abundance of

gaseous  oxygen  and  methane  in  extreme  thermodynamic  disequilibrium,  were  strongly  suggestive  of  the
presence of life on Earth. This widespread pigmentation that could not be explained by geological processes

alone,  is  caused  by  the  cellular  structure  of  vegetation  –  a  mechanism for  potentially  limiting  damage  to
chlorophyll and/or limiting water loss. The distinctive increase in the red portion of Earth’s global reflectance

spectrum  is  called  the  vegetation  red  edge  in  astrobiology  literature  and  is  one  of  the  proposed  surface
biosignatures to search for on exoplanets and exomoons. Earth’s surface vegetation has only been widespread

for about half a billion years, providing a surface biosignature for approximately 1/9 th our planet’s lifetime.
However, as chlorophyll is present in many forms of life on Earth, like cyanobacteria, algae, lichen, corals, as

well as leafy vegetation, such a spectral red edge feature could indicate a wide range of life, expanding its use for
the search for surface biosignatures beyond vegetation alone to a time long before vegetation became widespread

on Earth. We show how lichens could extend the presence of Earth’s red edge surface biofeature to 1.2 Gyr ago,
while  ocean  surface  algae  and  cyanobacteria  could  extend  it  to  over  2  Gyr  ago,  expanding  the  use  of  a

photosynthetic red edge to earlier times in Earth’s history.
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1. INTRODUCTION
Among several thousand detected exoplanets that now

provide a first glimpse of the diversity of other worlds
(e.g., reviewed in Winn & Fabrycky 2015) are the first

small  exoplanets  that  could  potentially  be  habitable
(see, e.g., Batalha 2014; Kane et al. 2016). Signs of life

that modify the atmosphere or the surface of a planet,
and thus can be remotely detectable, are key to finding

life  on  exoplanets  or  exomoons  (see  e.g.  review by
Kaltenegger 2017). Remote direct detection of surface

life  in  reflected  light  from  exoplanets  becomes
possible  when  organisms  modify  the  detectable

reflectivity of the surface (e.g. by influencing surface
colors). Land vegetation is commonly cited as such a

surface biosignature, indicative of life (e.g. Sagan et al.
1993).

The  most  abundant  surface  reflectance  feature
indicating the presence of life on present-day Earth is

land vegetation. Vegetation exhibits a strong increase
in reflectance at ~700 nm; a feature commonly called

the  vegetation  red  edge  (VRE)  in  exoplanet
biosignature  studies  (see  e.g.  Seager  et  al.  2005,

Arnold et al. 2009; Fujii et al. 2010; Schwieterman et
al. 2018). The strength of this increase varies between

plant  species  (e.g.  O’Malley-James  &  Kaltenegger
2018), but is typically ~50% for present-day common

deciduous vegetation. Vegetation covers about 60% of

present-day Earth’s land surface, thus the VRE can be
seen in Earth’s globally averaged reflectance spectrum

as an increase of a few percent (e.g. Seager et al. 2005;
Montañés-Rodríguez et  al.  2006,  Arnold et al.  2009;

O’Malley-James  &  Kaltenegger  2018).  Note  that  a
VRE  surface  biosignature  similar  to  that  on  the

present-day Earth would be difficult to detect without
very  high-precision  instruments  (e.g.  Arnold  et  al.

2009). The vegetation red edge has been proposed as a
remotely detectable  surface biosignature for habitable

planets, which will be challenging but very interesting
to detect over interstellar distances (see e.g. Sagan et

al.  1993,  Seager  et  al.  2005,  O’Malley-James  &
Kaltenegger 2018). 

Vegetation is defined as assemblages of plant life,
where plants are defined as photosynthetic eukaryotes,

consisting of the flowering plants, conifers and other
gymnosperms,  ferns,  clubmosses,  hornworts,

liverworts,  mosses  and  green  algae.  The  exact
wavelength  and  strength  of  the  spectroscopic  VRE

depends on the plant species and environment (see e.g.
Kiang et al. 2007 and discussion in Rothschild 2008).

All  of  these  organisms  have  been  responsible  for
Earth’s  vegetation  reflectance  feature  through

geological  time  (O’Malley-James  &  Kaltenegger
2018)  since  land  plants  first  appeared  ~725  –  500

million years ago (Zimmer et al. 2007; Magallón et al.



2013). 
Yet,  even  on  Earth,  chlorophyll-containing

photosynthetic  structures  that  exhibit  a  red  edge
feature are present in organisms other than vegetation

(see Fig. 1); including lichens (e.g. Clark 2007), corals
(e.g.  Roelfsema  &  Phinn  2006),  algae  and

cyanobacteria  (Hegde  et  al.  2015),  which  developed
long before vegetation became widespread. Widening

the commonly held conception of the vegetation red
edge  to  encompass  these  others  forms  of

photosynthetic  life  –  a photosynthetic  red  edge  –
extends  the  timeline  of  possible  detection  of

photosynthesic life on Earth to up to 2 Gyr ago, as well
as expanding the applicability of this biosignature to a

wider  range  of  exoplanets,  including  rocky  ocean
planets with large water surfaces. 

Chlorophyll-a and -b, the primary molecules that
absorb energy from light and use it to drive oxygenic

photosynthesis  (converting H2O and CO2 into sugars
and  O2),  have  a  distinct  reflectance  profile:

Chlorophyll  a has  its  strongest  absorption  peaks  at
0.450 μm, chlorophyll m, chlorophyll  b has its main absorption peak

at 0.680 μm, chlorophyll m (e.g. Gates et al. 1965; Kiang et al. 2007,
Seager et al. 2005 and references therein). A thorough

analysis of the likelihood of oxygenic photosynthesis
arising elsewhere is  given by Wolstencroft  & Raven

(2002) and Rothschild (2008).
Here,  we  explore  whether  a  photosynthetic  red

edge  feature  in  an  (exo)planet’s  spectrum  could  be
produced by organisms aside from vegetation, whether

such  features  could  be  detectable  –  expanding  the
range  of  organisms  that  could  be  uncovered  by

detecting  a  red  edge  –  and  whether  we  could
distinguish the organisms producing the red edge from

vegetation when observing an exoplanet.  This means
we model  disk integrated observations  with high,  as

well  as  limited,  spectral  resolution. We  use  the
reflectance  spectra  of  four  different  photosynthetic

organisms,  which  could  have  provided  widespread
surface coverage on our Earth as template for Earth-

like  planets:  We use  cyanobacteria,  algae,  lichen,  as
well as deciduous vegetation to assess how the strength

of a planet’s photosynthetic red edge signature would
change if different types of organisms were dominant. 

Cyanobacteria have populated Earth for at least 2
billion  years,  with  some  evidence  suggesting  they

could  be  as  old  as  ~3.5  billion  years  (Knoll  2008;
Brasier et al. 2015), while the earliest fossils attributed

to algae are around 1 billion years old (Knoll 2008).
Lichen may also have emerged about 1 billion years

ago (Horodyski & Knauth, 1994; Raven 1997; Knauth
& Kennedy 2009), while corals and modern vegetation

only  appeared  about  ~725  –  500  million  years  ago

(Pratt et al. 2001).
We model how Earth's (or an Earth-like planet's)

spectrum  would  change  as  a  result  of  a  change  in
dominant organism. A reduction in the covered surface

as well as an increase in cloud coverage both reduce
the strength of any surface feature, while an increase in

covered surface area (e.g.  a bigger  Super-Earth) and
reduction of cloud coverage (e.g. a drier planet) will

increase it. We show disk-integrated spectra similar to
the  observation  geometry  obtained  shortly  before  or

after secondary eclipse or during direct imaging of the
planet itself, for clear sky as well as Earth-like cloud

coverage (see Figure 2). 

2. METHODS
We  model  planetary  spectra  with  different  surface

coverage  for  organisms  using  chlorophyll  with  a
present-day  Earth  atmosphere  using  EXO-Prime

(Kaltenegger  &  Sasselov  2009);  a  coupled  1D
radiative-convective  atmosphere  code  developed  for

rocky  exoplanets,  which  models  an  Earth-like
exoplanet’s  atmosphere,  its  spectrum  (see  e.g.

Kaltenegger 2010; Rugheimer et al. 2013; 2015, 2017)
as  well  as  the  UV  environment  on  its  surface  (see

Rugheimer  et  al.  2015;  O’Malley-James  &
Kaltenegger 2017; Kozakis & Kaltenegger 2019).

Our  radiative  transfer  model  is  based  on  a
model  that  was  originally  developed  to  model  the

Earth’s atmospheric spectra (Traub & Stier 1976) and
has  since  been  used  extensively  for  analyzing  high-

resolution  Fourier  transform  spectra  from  ongoing
stratospheric balloon-based observations to  study the

photochemistry  and  transport  of  the  Earth’s
atmosphere (for example, Jucks et al. 1998). Our line-

by-line radiative transfer code has also been used for
numerous  full  planetary  disk  modeling  studies,  both

for  theoretical  studies  (e.g.,  Des Marais  et  al.  2002;
Kaltenegger et al. 2010; Rugheimer et al. 2015, 2017)

and fitting observed earthshine spectra (e.g., Woolf et
al. 2002; Turnbull et al. 2006; Kaltenegger et al. 2007;

Rugheimer et al. 2013). We divide the atmosphere into
60  thin  layers  from  0  to  100  km  in  altitude.  The

spectrum is calculated at very high spectral resolution,
with  several  points  per  line  width,  where  the  line

shapes  and widths  are  computed  using  Doppler  and
pressure broadening  on a  line-by-line  basis  for  each

layer in the model atmosphere. 
We use a simple geometrical model in which the

spherical  Earth  is  modeled  with  a  plane-parallel
atmosphere  and  a  single  angle  of  incidence  and

reflection (visible) or emission (thermal infrared). This
angle  is  selected  to  give  the  best  analytical

approximation to the integrated-Earth air mass factor



of 2 for a nominal illumination (quadrature); the zenith
angle of this ray is 60 degrees. 

The overall high-resolution spectrum is calculated
at  a  resolution  of  0.1  wavenumbers  and smeared  to

lower resolution. For reference and further explanation
concerning  the  code,  the  reader  is  referred  to  our

calculation of a complete set of molecular constituent
spectra,  for  a  wide  range  of  mixing  ratios,  for  the

present-day Earth pressure-temperature profile, and for
the  visible  to  thermal  infrared,  in  Des  Marais  et  al.

(2002) and Kaltenegger et al. (2007).
To  explore  how a  range  of  organisms  using

chlorophyll  affect  the  disk  integrated  spectrum of  a
planet  and  specifically  the  photosynthetic  red  edge

signal,  we  use  normalized  reflectance  spectra
(Roelfsema & Phinn 2006; Clark 2007; Cartaxana et

al.  2017)  for  the  range  of  photosynthetic  organisms
shown  in  Figure  1. For  aquatic  organisms  (algae,

cyanobacteria) we assume these are living on the ocean
surface; hence, water attenuation and transmission can

be neglected for these cases. 
We will shortly discuss aquatic organisms that are

not  surface organisms in the Discussion section.  We
did not include them in our full study because, while

much is known about Earth’s oceans, in an exoplanet
context  it  could potentially  be misleading to assume

absorption and transmission properties using an Earth-
analog  ocean,  especially  if  the  ocean’s  composition

and the host star differ from our own planet’s.
We  first  model  a  scenario  where  one  organism

covers the entire surface of an Earth-size planet with a
present-day Earth composition atmosphere,  modeling

both  clear-sky  and  50%  cloud-fraction  scenarios
analogous  to the  present  day Earth.  Note  that  while

caution should be applied to this initial hypothesis of a
planet completely covered by one single phototrophic

organism – on Earth  today,  several  different  species
coexist on the planet, making the surface coverage of

the dominant species less than 100% – it is a scenario
that also should not be ruled out. We use this scenario,

100%  surface  coverage,  as  a  starting  point  in  our
simulations to explore whether the effect is detectable

in  principle. We  then  refine  this  initial  model  to
represent an Earth analog, by combining a mixture of

surface  types,  which  includes  70%  of  the  planetary
surface as uninhabited ocean. The remaining surface is

composed of 2% coast and 28% land. The land surface
consists  of  60%  vegetation,  9%  granite,  9%  basalt,

15% snow,  and  7%  sand,  which  reproduces  Earth’s
disk integrated spectrum (following Kaltenegger et al.

2007). 
Note that while a snapshot of Earth’s reflectance

spectrum can vary considerably at any given moment

of  time  as  the  planet  rotates  and  different  surface
compositions come into view (see e.g. Ford et al. 2001,

Palle et al 2008), exoplanet observations will need to
be collected over tens of hours to several days to allow

the level of detailed study required to identify surface
biosignatures.  Therefore,  a  disk  integrated  model  is

similar  to  the  quality  of  such  future  data.  While
observations of a small number of sufficiently photon-

rich  exoplanet  targets  with  large  telescopes  may
provide detailed spectroscopic data that could capture

changes  on  an  exoplanet’s  observable  surface  as  it
rotates,  in  general  observing  a  planet  as  one  dot  of

light  with integration times of tens of hours to days
would provide measurements that are similar to a disk

integrated spectra  combining the different  areas  of  a
planet  (see  e.g.  Kaltenegger  et  al.  (2007)  and

Rugheimer  (2013)  for  validation  of  Earth’s  disk
integrated spectra with remote Earth observations). We

then  substitute  modern  vegetation  with  the  selected
organism  to  investigate  the  impact  of  different

chlorophyll-containing  life  on  a  planet’s  spectrum.
While  we  have  no  guidelines  for  whether  another

habitable exoplanet  would have a similar  land-ocean
distribution  to  the  present-day  Earth,  we  use  this

scenario to show the influence of surface coverage on
the signal representative of a wide model grid in Table

1.
How  changes  in  climate  could  alter  a  planet’s

cloud  fraction  is  still  debated:  For  example,  as
discussed  for  Earth’s  evolution  in  the  literature,

warmer  climates  could  increase  humidity,  favoring
increased  cloud  formation  (see  e.g.  Sellwood  et  al.

2000),  but  higher  temperatures  could  also  reduce
nutrient  cycling  in  the  oceans,  reducing  the  rate  of

biologically-produced  cloud  condensation  nuclei,
leading  to  optically  thinner,  shorter-lived  clouds

(Kump  &  Pollard  2008).  Even  if  the  overall  cloud
fraction  remained  approximately  constant,  cloud

distributions  could  change  (see  e.g.  Brierley  et  al.
2009,  which  shows  how in  a  warmer  climate  high-

cloud fractions could increase and low-cloud fractions
could decrease). While the discussion is on-going, we

model  a  50% cloud  coverage,  based  on  present-day
Earth’s  cloud  coverage,  modelled  at  the  height  of

Earth-clouds  with  similar  fractions,  such  that  the
model  is  consistent  with  Earthshine  data  (see

Kaltenegger et al. 2007).

3. RESULTS & DISCUSSION

3.1 The Photosynthetic Red edge feature can indicate



a wide range of organisms

Organisms,  which  contain  chlorophyll,  besides

vegetation, could also produce similar red edge surface
biosignatures for similar surface coverage (see Fig. 2

and  Table  1),  depending  on  how  widespread  their
surface  coverage  is.  We  do  not  have  data  for  the

surface coverage of e.g. lichen or cyanobacteria for a
young Earth.  Table  1 shows that  for  similar  surface

coverage the Photosynthetic Red Edge signal of other
organisms that could be dominant on the surface of an

exoplanet  can  be  similar  in  strength  to  the  signal
produced  by  modern  vegetation  for  Earth  in  our

models,  which is  approximated using deciduous tree
reflectance producing an estimated reflectance increase

of ~4% (Table 1), falling within the lower end of the
range of values (1-10%) given for Earth’s vegetation

red edge (see e.g. review by Arnold 2009). Figure 1
shows that individually the different organisms can be

distinguished with high spectral resolution. However,
once we add a present-day Earth atmosphere as well as

clouds  to  the  model  (Figure  2),  the  individually
distinguishing slope of the reflectivity of the organisms

is no longer apparent. Thus a red edge detection, while
not being specific to any one form of photosynthetic

organism, can indicate a wider range of organisms than
only vegetation.

3.2 Lichens could have produced a Photosynthetic Red
Edge surface biosignature before vegetation emerged

on a young Earth

Lichens may have colonized the land between 0.85

and 1.2 Gyr ago (Horodyski & Knauth, 1994; Raven
1997;  Knauth  &  Kennedy  2009)  causing  a  “non-

vegetation” red edge signature before Earth gained its
vegetation red edge about 0.5 Gyr ago. As shown in

Fig. 1, lichens have red edge strengths of ~20%. This
is  only  about  half  the  strength  of  that  of  modern

vegetation, resulting in a weaker globally averaged red
edge signature on a lichen-dominated planet (see Fig.

2,  Tab.  1),  compared  to  present-day  vegetation  for
similar surface coverage. Note that the vegetation red

edge  was  also  weaker  initially  and  has  changed  in
strength over the past 500 Myr and would likely have

had a similar  strength to lichens when the first  land
plants  emerged;  see  O’Malley-James  & Kaltenegger

(2018)  for  details.  However  lichens  could  have
provided an observable red edge for a younger Earth

before  vegetation  became  widespread  on  land,
extending the time the red edge surface feature  was

detectable for our own planet to about a billion years
ago.

3.3  A  widespread surface  algae  and  cyanobacteria

biosphere could have produced a Photosynthetic Red
Edge  surface  biosignature  before  vegetation  on  a

young Earth

Cyanobacteria may have been widespread between

~3.5 and 2 Gyr ago (Knoll 2008; Brasier et al. 2015)
causing  a  photosynthetic  red  edge  signature before

Earth surface vegetation became wide-spread about 0.5
Gyr ago. As shown in Fig. 1, cyanobacteria have red

edge strengths of ~25%. This  is  only about  half  the
strength of  that  of  modern vegetation,  resulting in a

weaker  globally  averaged  red  edge  signature on  a
planet  with  ocean  surface  dwelling  algae  and

cyanobacteria  (see  Fig.  2,  Tab.  1),  compared  to
present-day vegetation for similar surface coverage. 

Note that  we assume surface dwelling algae and
cyanobacteria  in  our  models.  In  a  water  body,

microbial  photosynthesizers  can  live  at  any  depth
within the photic zone (defined as the depth to which

sufficient  light  penetrates  to  drive  photosynthesis),
given adequate temperatures and nutrient availability;

however, the highest concentrations of such life tend to
be  found  at  or  near  the  surface  in  ideal  growing

conditions.  Note  that  the  depth  of  the  photic  zone
would vary based on star type and the orbital distance

of  the  planet.  Hence,  microscopic  ocean  surface-
dwelling organisms could have provided an observable

red  edge  for  a  younger  Earth  before  vegetation  or
lichens became widespread on land, extending the time

the red edge surface feature was detectable for our own
planet to at least 2 billion years ago.

3.4.  Other  life  forms  can  also  generate  a
Photosynthetic Red Edge feature.

Other forms of life can also show a red edge, such
as some  types  of  corals,  which  show  up  to  ~65%

increase in reflectance in the visible (Clark 2007). For
subsurface  aquatic  photosynthetic  life,  water

attenuation  and  transmission  would  need  to  be
accounted  for,  which  would  reduce  the  detectable

reflectivity  feature  with  increasing  amounts  of
overlying  water  and  depends  on  the  ocean’s

composition,  suspended particles  as  well  as  the host
star. While much is known about Earth’s oceans, in an

exoplanet context ocean composition is unknown and
thus have not been included in our detailed study.

On Earth,  corals do not  occupy a significant
enough surface fraction to produce a strong global red

edge feature on Earth. However, this does not exclude
the possibility of such forms of life being abundant on



another  habitable  planet.  For  example,  for  a  similar
surface  coverage,  a  coral-like  organism  has  the

potential to produce a stronger red edge feature than
modern  land  vegetation  (see  Fig.  1),  although  this

would depend on the water depth, which would reduce
the strength of subsurface reflection features.

For  completeness  note  that  even  photosynthetic
animals like the sea slug Elysia viridis (e.g. Cartaxana

et al. 2017) show an red edge increase of ~35% (see
Figure  1). These  features  are  due  to  symbiotic

relationships  with  green  algae  and/or  the  direct
incorporation  of  chlorophyll  into  tissues  but  are  not

expected to provide a widespread surface coverage.  

4. CONCLUSIONS
Using  Earth,  with  its  diverse  biota,  as  our

Rosetta Stone to identify life on other worlds, we show
that the Photosynthetic Red Edge (PRE) can indicate a

wide range of organisms on a habitable exoplanet, in
addition  to  surface  vegetation.  While  oxygenic

photosynthesis,  based  on  chlorophyll-like  structures,
may  be  favored  by  evolution  on  other  worlds

(Wolstencroft  &  Raven  (2002);  Rothschild  (2008)),
whether  or  not  vegetation  becomes  the  dominant

surface  coverage  on  exoplanets  or  exomoons  is
unknown. 

We show and compare disk-integrated spectra
of Earth-like planets assuming that they are dominated

by  four  different  organisms,  which  use  chlorophyll:
cyanobacteria,  algae,  lichen,  as  well  as  deciduous

vegetation,  expanding  the  timeline  for  the red  edge
surface biosignature from 500 Million years, based on

widespread surface vegetation, back in Earth’s history
to at least 2 billion years ago due to other biota which

use photosynthesis. 
    When adding present-day Earth’s  atmosphere  as

well as clouds to the model (Figure 2), the individually
distinguishing slope of the reflectivity of the different

organisms  (Fig.  1)  is  no  longer  apparent  in  a  low
resolution reflection spectrum. Thus a photosynthetic

red edge surface biosignature detection can indicate a
wider range of organisms than just vegetation. 

A PRE biosignature similar to that on the present-
day  Earth  would  be  difficult  to  detect  without  very

high-precision  instruments  on  exoplanets.  However,
our models show that the PRE signature can increase

for different organisms that use chlorophyll, as well as
with  increasing  surface  fraction  of  an  organism and

decreasing cloud coverage on a planet. 
Depending  on  the  unknown  surface  coverage,

organisms like lichens and algae  at the ocean surface
could have provided a detectable surface PRE feature

for  a  younger  Earth  about  1  billion  years  ago,  and
cyanobacteria up to at least 2 billion years ago, long

before land vegetation became widespread about 750
to 500 Million years ago, which dominates present-day

Earth’s  PRE  signal.  This  expands  the  use  of  a
photosynthetic  red  edge  surface  biofeature  to  earlier

times in Earth’s history as well as to a wider range of
habitable extrasolar planet scenarios.
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Figure 1. Examples of red edge features – the increase in reflectance caused by chlorophyll, highlighted in the

shaded region – exhibited by (A) corals, (B) deciduous vegetation (trees; representative of the present-day red
edge feature in Earth’s spectrum), (C) the photosynthetic sea slug,  Elysia viridis,  (D) lichen (Acarospora sp.),

(E) algae (Rhodosorus marinus), (F) cyanobacteria (Chroococcidiopsis sp.).

Figure  2.  Model  spectra  showing how an  Earth-like  atmosphere  influences  the  red  edge  strengths  for  the

examples from Fig. 1 (excluding the sea slug, Elysia viridis and corals), for a clear atmosphere (black line) and
an Earth-like cloud fraction (grey line). (Left) assuming 100% of the planet’s surface is covered by the organism;

(right) similar surface coverage as present-day Earth, replacing vegetation with the selected organism. Note that
algae and cyanobacteria are assumed to be at the ocean surface.



Species 100% Surface
Cover

[clear]
(%)

100% Surface
cover 

[50% cloud]
(%)

Earth analog
surface

[clear]
(%)

Earth analog
surface

[50% cloud]
(%)

Trees 40 20 9 4

Lichen 18 9 2 1

Algae 23 11 6 3

Cyanobacteria 20 10 4 2

Table 1. The percentage increase in reflected flux at the red edge.  Results show the increase in visible flux at
~700 nm for the globally averaged model planet spectra plotted in Figure 2 for: (left) 100% of the planet’s

surface  is  covered  by  the  organism;  (right)  similar  surface  coverage  to  the  present-day  Earth,  replacing
vegetation with the selected organism.
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