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ABSTRACT

Perhaps the biggest hurdle to mankind’s expansion throughout the Solar System is the prohibitive

cost of escaping Earth’s gravitational pull. In its many forms the space elevator provides a way

to circumvent this cost, allowing payloads to traverse along a cable extending from Earth to orbit.

However, modern materials are not strong enough to build a cable capable of supporting its own

weight. In this work we present an alternative to the classic space elevator, within reach of modern

technology: The Spaceline. By extending a line, anchored on the moon, to deep within Earth’s gravity

well, we can construct a stable, traversable cable allowing free movement from the vicinity of Earth

to the Moon’s surface. With current materials, it is feasible to build a cable extending to close to

the height of geostationary orbit, allowing easy traversal and construction between the Earth and the

Moon.

1. INTRODUCTION

For a vehicle travelling in empty space it’s momen-

tum, as well as it’s energy, comes from it’s fuel. It must

push heavy material behind it to propel itself forward.

However, if there were a fixed object to push against a

vehicle could generate momentum via friction. Thus if

we could design a steady cable, in tension, spanning a

region of deep-space, we could move along it with solar

power (or any other such source) alone. This can greatly

decrease the cost and difficulty of spanning extraterres-

trial distances - and is the reason why the concept of

the space elevator (a cable, held vertical by centrifugal

force, from the equator into deep space) is seen a major

leap in reducing the cost, and increasing the access, of

human space-travel.

However, the fundamental limit on a space elevator

is whether a material can support its own weight over

the necessary length. Modern, mass-producible materi-

als currently cannot reach this limit, either they break

under their own weight or must be so wide as to be

near implausible to construct and deploy. We may be

on the horizon of substantially stronger materials, such

as carbon nanotubes, but the maximum manufacturable

length of such materials is presently prohibitively short.

However, there is another way to circumvent this

problem, and that is to reduce the force on the ca-

ble. Classic space elevators are supported by centrifugal

forces, and thus require a large counterweight beyond

geostationary orbit to counteract Earth’s gravitational

pull. These competing forces put the cable in a large

amount of tension ,and even when the cable has a ta-

pered profile (which minimises the tension), there is a

large weight of cable close to the Earth which experi-

ences huge gravitational forces.

In comparison, a cable which only hangs into Earth’s

gravitational well need not be thick or massive. It is

optimal to make it as thin as possible as it extends closer

to Earth. This means that the gravitational forces the

cable feels, and thus the tension, is much reduced.
This is the basic concept of what we dub the Space-

line. Figure 1 shows a conceptual sketch of the spaceline.

We will show that with materials and techniques com-

parable to what has already been achieved in the fields

of manufacturing and spaceflight, such a cable, extend-

ing to the height of a geostationary orbit, is theoretically

achievable today. Once the cable is constructed, the cost

of subsequent spacelines will diminish dramatically, and

correspondingly greater payloads will be transportable,

relatively cheaply, between geostationary orbit and the

Moon.

This is not a completely novel concept, rather an inde-

pendent genesis and derivation of an idea that has been

explored in works like Pearson (1979), Pearson et al.

(2005) and Eubanks & Radley (2016), where it has also
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2 Penoyre & Sandford

been called a Lunar Space Elevator1. We present the

derivations herein as a full standalone mathematical and

physical description of the concept, one that we and au-

thors before us have been surprised to find is eminently

plausible and may have been overlooked as a major step

in the development of our capacity as a species to move

within our solar system.

2. PRELIMINARIES

Before we introduce the construction of the Spaceline

itself, it will be useful to define the problem in simple

quantities.

2.1. Forces in the Earth-Moon system

Figure 1 shows a simple sketch of the Earth-Moon sys-

tem, and Table 1 gives some relevant physical scales. It

will be convenient to work in dimensionless co-ordinates,

scaled relative to the Earth-Moon distance D. If x is the

distance from the centre of the Earth to some point, let

ε =
x

D
. (1)

Thus, a cable extending from the surface of the moon

to some height H above the Earth, would run from ε =

1 − r
D to h (where H = hD) in our co-ordinates. For

reference, geostationary orbit occurs at εgeo ≈ 0.12 and

the Lagrange point between the Earth and the Moon,

where the gravitational forces of Earth and the Moon

balance exactly, occurs at l ≈ 0.85.

The Spaceline is held in place primarily by its gravi-

tational attraction to the Earth. It is anchored to the

Moon at one end, and the weight of the cable itself keeps

it pulled taut, pointing toward Earth, by Earth’s grav-

ity. It rotates with the Moon, completing a full rota-
tion once per lunar orbit (∼ 1 month). As the Moon

is tidally locked, the anchor point will always face di-

rectly towards the Earth and we need not worry about

the cable winding itself up.

In contrast, the classic space elevator is supported by

large centrifugal forces, anchored to and co-rotating with

Earth, completing a full rotation once a day. As it is

fixed at one point on the Earth’s surface, it must always

remain vertically above that point. If there were signifi-

cant differential rotation, the cable would start to bend

and collapse. We save a detailed derivation of the form

and forces of the space elevator for Appendix A1.

We can write down the gravitational acceleration act-

ing on a point mass a distance x from Earth and distance

1 A name we avoid so as to highlight the different forces act-
ing upon the cable - namely that the Spaceline does not need
centrifugal forces to be in equilibrium

H=D⋅h

a(ε)

T(ε)+dT

T(ε)
+

dm ⋅ g(ε)

dx
=

D⋅dε
x=D⋅ε

L=D⋅l

D

R Rgeo

r

ω~ 2 π
1 month

Figure 1. A simple sketch of the Spaceline, with the Earth
(radius R), Moon (radius r), Earth-Moon distance (D),
and height of geostationary orbit (Rgeo) drawn to scale.
Throughout this work, we will rescale the physical coordi-
nates, x, to dimensionless coordinates, ε, such that the cen-
tre of the Earth is at ε = 0 and the centre of the Moon at
ε = 1.
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M Mass of Earth 5.972 × 1024 kg

m Mass of Moon 7.348 × 1022 kg ≈ 0.01 M

R Radius of Earth 6, 371 km

r Radius of Moon 1, 737 km ≈ 0.27 R

D Earth-Moon distance 384, 400 km ≈ 60 R

RISS International Space Station altitude ∼ 100 km above Earth’s surface ≈ 6, 771 km ≈ 1.06 R

Rgeo Geostationary orbit 42, 164 km ≈ 6.6 R

L Earth-Moon Lagrange point 1 326, 000 km ≈ 51 R

Table 1. The parameters of the Earth-Moon system. The Earth-Moon distance given is the semi-major axis of the Moon’s
orbit, which is slightly eccentric (e = 0.055). Currently, we do not account for the Moon’s eccentricity, but it represents only a
small correction to our calculations.

D − x from the Moon,

agrav(x) =
GM

x2
− Gm

(D − x)2
. (2)

Note that we define all accelerations as pointing towards

the Earth, such that they will be negative close to the

Moon.

In the co-rotating Earth-Moon frame, the centre of

mass is at

xc.o.m.
2 =

m

m+M
D. (3)

The Earth-Moon frame rotates with an angular velocity

ω =

√
G(M +m)

D3
. (4)

Thus the centrifugal acceleration is

acent(x) = (xc.o.m.−x)ω2 =
G(M +m)

D3

[
mD

M +m
− x
]
.

(5)

The stationary Spaceline feels no Coriolis forces. Pay-

loads moving along it will, although at speeds of up to

0.01c, the resulting bowing of the cable is negligible.

It will also be useful to express the mass of the Moon

in terms of the mass of the Earth using

µ =
m

M
. (6)

We can combine the gravitational and centrifugal ac-

celerations to find the total acceleration. Expressing it

simply in terms of ε and µ gives

g(ε) =
GM

D2

[
1

ε2
− µ

(1− ε)2 + (µ− (1 + µ)ε)

]
. (7)

The first two terms in the brackets are the gravita-

tional contribution, and it can be seen that these dom-

inate close to the Earth and Moon respectively. The

2 This actually lies within the Earth’s radius and hence the
assumption that the Earth can be treated as a point mass for this
calculation breaks down. However, the difference will be small,
and only affects the centrifugal forces which, as we will go on to
show, are only a small fraction of the forces acting on the cable.
Thus we will not concern ourselves with this detail presently.

third term is the centrifugal force, which is generally

small (and can be ignored for pedagogically simpler cal-

culations with only a minor impact on the results).

2.2. Physical constraints on a cable

A few simple parameters, intrinsic to the material of

which the cable is made, define the physical capabili-

ties of a cable in tension. Ignoring defects and wear,

a material will break when the stress (force per unit

cross-sectional area a) exceeds some critical value, the

breaking stress B. Thus, a heavier load and larger force

can be accommodated by a cable made of stronger ma-

terial (higher B) or a cable with larger cross-sectional

area (higher a).

The density of the material, ρ, which can reasonably

be assumed to be constant and intrinsic to the material,

will also be important. Most of the load a cable must

bear is its own weight. It is very possible to invent a

construction such that a cable would break solely from

the forces acting upon it, before we introduce any pay-

load weight (in fact, this is the major stumbling point of

current space elevator design). Thus it is useful to define

the specific strength, S = B
ρ , such that a “specifically

stronger” material is one with either higher breaking

stress or lower density.

Finally, it will be useful to reparameterise the strength

of the material in terms of the relevant forces for the

problem we are trying to solve. We define the dimen-

sionless relative strength of a material as

α =
SD

GM
. (8)

A material with α � 1 will be much stronger than the

forces involved in the Earth-Moon system, and materials

with α� 1 will be much too weak.

In Table 2, we list the strength of a range of materials.

Man-made materials, particularly those made from long

chains of carbon, can now achieve very high strengths

(finally surpassing those from the natural world) with-

out very high densities. Carbon nanotubes, which are

made of graphene manipulated into tube-like structures,

are included in this table as they have been synthesised,
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Material ρ (kgm−3) B (Nm−2) S (Nmkg−1) α

Steel 8000 5 × 108 6.25 × 104 0.06

Titanium alloy 4800 1.25 × 109 2.6 × 105 0.24

Spider silk 1300 1.4 × 109 1 × 106 0.98

Carbon fibre 1750 4.3 × 109 2.5 × 106 2.2

Kevlar 1400 3.6 × 109 2.5 × 106 2.5

Dyneema 970 3.6 × 109 3.7 × 106 3.4

Zylon 1500 5.8 × 109 3.9 × 106 3.5

Carbon nanotube ∼ 1000 6 × 1010 6 × 107 55

Table 2. The density (ρ), tensile strength/breaking stress (B), specific strength (S) and relative strength (α) of various
materials. Kevlar, Dyneema and Zylon are trademarked names for three different carbon-based manufactured fibres from
different molecular families. Carbon nanotubes have been produced in laboratory conditions, but are still many years from
being mass producible. Values taken straight from Wikipedia.

but only very short lengths have been produced. They

provide a very promising glimpse to the future of strong,

lightweight materials, but their use in large-scale engi-

neering projects is still a long way off. Many variants on

the space elevator invoke these future materials to make

the design feasible, but as we will show, the strength

of existing materials, such as Kevlar and Dyneema, is

more than sufficient to construct a spaceline.
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Figure 2. The variation of η(ε), as given by Equation 12,
as a function of the scaled distance from the Earth, ε, which
ranges from 0 at Earth’s centre to 1 at the centre of the
Moon. The dashed curve shows the form if centrifugal forces
are ignored. The height of Earth’s surface, a geostationary
orbit and the Lagrange point are all shown (as is the surface
of the Moon, though it is too close to the right-hand edge of
the plot to be visible here).

2.3. Forces on the cable

Figure 1 also diagrams an infinitesimal cross-section

of the cable, of length dx at position ε, and the forces

acting upon it. It feels the tension of the weight of cable

“below” (closer to Earth than) it, T (ε); the gravitational

and centrifugal forces acting upon it, g(ε)dm; and the

tension of the cable above (Moonward of) it, T (ε+dε) =

T (ε) + dT .

The mass of this infinitesimal element, with length

dx = Ddε, is

dm = ρa(ε)Ddε (9)

where a(ε) is the cross-sectional area of the cable at ε

(the cable’s area may vary along its length). Thus, the

tension of the cable satisfies

dT = dm g(ε)

=
GMρ

D
a(ε)

[
1

ε2
− µ

(1− ε)2 + (µ− (1 + µ)ε)

]
dε.

(10)

Note that at the Lagrange point (ε = l ≈ 0.85), dT will

equal zero. Earthward of the Lagrange point, dT > 0,

and Moonward of the Lagrange point, dT < 0; corre-

spondingly, the tension T is greatest at the Lagrange

point.

If the area of the cable is specified, dT can be inte-

grated to find the tension throughout the cable. The

free end of the cable, the end closest to the Earth, expe-

riences no tension. If the cable terminates at a height H

(measured from the centre of the Earth) the boundary

condition is T (h) = 0 where h = H
D .

Therefore, for a given material and cross-sectional

area profile a(ε), Equation 10 can be integrated to find

the total tension, T (ε), and we can thus calculate the

conditions under which a given cable will break. We

save such calculations for section 3, where we introduce

the simple and optimal forms of a(ε).

As we have discussed, a cable will break if the stress it

experiences at any point exceeds the breaking stress. It

will be convenient to work in terms of the specific stress,

σ(ε) =
T (ε)

ρa(ε)
. (11)

When σ(ε) is equal to the specific strength S, the cable

snaps.

At the same time, a cable can only support itself

in tension; it has no strength in compression (unlike a

tower of stacked bricks, for example, where the opposite

https://www.wikiwand.com/en/Specific_strength
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would be true).

Thus there are two ways in which the spaceline can

fail:

• Collapse - The tension, T (ε), must always be posi-

tive; otherwise the cable will collapse under its own

weight, as it cannot support itself in compression.

Since the tension decreases outward in both direc-

tions from the Lagrange point, it is minimised at

the two ends of the cable. To avoid the cable col-

lapsing onto the surface of the moon, we therefore

require that the tension be positive at the moon’s

surface: T (1− r
D ) ≥ 0.

• Breaking - The stress must never exceed the break-

ing stress, or else the cable will snap. The tension

(and thus the stress) is largest at the Lagrange

point; thus, to avoid breaking, we require σ(l) < S.

3. SPACELINE DESIGNS

In this section we explore three designs of the Space-

line, all stretching from the Moon’s surface to close to

the Earth (∼ Rgeo). The difference between these de-

signs lies only in their profile, i.e. how the cross-sectional

area of the cable changes along its length.

When the cross-sectional area a(ε) is specified, Equa-

tion 10 can be integrated, and we can then see whether

the conditions are met for the cable to neither break nor

collapse.

Assuming the strictest constraint on building the

Spaceline is the mass (and volume) of cable that needs to

be transported into space, we seek the lightest possible

configuration that will neither break nor collapse.

We derive the tension and stress in (i) a cable with

constant cross-sectional area, (ii) one with a tapering

profile, and finally (iii) a hybrid of the two. We will show

that the hybrid is the most efficient, given the practical-

ities of constructing such a structure, but all three are

relevant and help build intuition and understanding.

It will be useful to introduce the function

η(ε) =

∫
− D2

GM
g(ε)dε

=

∫
−
(

1

ε2
− µ

(1− ε)2 + (µ− (1 + µ)ε)

)
dε

=
1

ε
+

µ

1− ε +
(1 + µ)ε2

2
− µε

(12)

which will appear frequently throughout this section

(the minus sign in the integrand ensures η is always

positive). For reference, Figure 2 shows the behaviour

of this function, which becomes very large close to the

Earth and, to a lesser extent, near the Moon. It reaches

a minimum at the Lagrange point.

3.1. Constant area cable

0.0 0.2 0.4 0.6 0.8 1.0

h

100

101

102

α

CollapseBreak

Figure 3. The landscape of outcomes for the uniform-area
cable, depending on the relative strength α and the scaled
distance between Earth’s centre and the free end of the cable
h. The white region shows the possible cable heights for
which a uniform-area spaceline can be constructed without
breaking or collapsing, and the corresponding requirements
for the material strength.

The simplest cable is one which has a constant cross-

sectional area along its entire length. Thus

a(ε) = a0 (13)

and Equation 10 can be integrated to give

T (ε) =
GMρa0
D

[η(h)− η(ε)] , (14)

where h is the scaled distance between Earth’s centre

and the free end of the cable.

Furthermore, we can find the specific stress:

σ(ε) = S
η(h)− η(ε)

α
. (15)

From the tension, given by Equation 14, we can show

that the cable will not collapse (i.e., T > 0 always) if

η(h) > η(1 − r
D ). This gives a maximum value of h:

it must always be less than ∼ 0.24, irrespective of the

material. This requirement is not overly constraining:

adding an anchorweight to the free end of the cable al-

lows the creation of a stable structure for any h < l,

though for large h the mass of this anchorweight can

become prohibitively large. However, any anchorweight

must weigh more than the length of cable it replaces,

and thus for an Earth-Moon cable there is no obvious

utility to using one.

The condition for the cable not to break becomes the

condition that η(h) < α + η(l) (remembering that the

stress is maximized at the Lagrange point). η(l) is a

constant of the system, and is approximately equal to

1.6, and thus we see the impact of the relative strength;

larger α allows larger values of η(h), which correspond to

smaller values of h, without reaching the breaking stress.

This means that for larger α, the cable can extend closer

to Earth’s surface.
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We now have two conditions on η(h), both of which

must be satisfied for a uniform-area spaceline to be pos-

sible. We can rearrange these to a condition on the

strength of the material, α > η(1 − r
D ) − η(l) ∼ 2.6.

Thus a constant area spaceline can exist for any mate-

rial with a relative strength of ∼ 3 or greater, which,

with reference to Table 2, a number of currently manu-

facturable materials satisfy.

This is in stark contrast to a similar calculation ap-

plied to the space elevator (see Appendix A), which

shows that the space elevator would require a material

with α > 50, impossible with modern materials.

Figure 3 shows how strong a cable material must be, to

avoid breaking, as a function of the height of the free end

of the cable, h. We see that as the strength increases,

the free end of the cable can come closer to the Earth’s

surface before it breaks. A cable with α > 50 would

be able to reach Earth’s atmosphere/surface (although

of course such a strong material could also allow the

construction of the space elevator).

3.2. Tapering cable

If a constant-area cable breaks, it does so at one spe-

cific point where the stress is too high, while the rest of

the cable is still below that stress. This situation could

easily be avoided by increasing the cross-sectional area

at that point, leading to a larger heavier cable with more

tension, but never sufficient stress to break.

There are many possible profiles in which the cable

can be prevented from breaking. Here, we present one of

the simplest: a cable for which the area varies such that

the whole length is at, but never exceeds, the breaking

stress.

This requires

T (ε) = Sρa(ε) =

∫
dT (16)

which we can differentiate, using Equation 10, to give

the condition on the area

da

dε
=
a(ε)

α

[
1

ε2
− µ

(1− ε)2 + (µ− (1 + µ)ε)

]
. (17)

Integrating, using the boundary condition that a = a0
at some ε = ε0, we find

a(ε) = a0e
η(ε)−η(ε0)

α . (18)

Finally, by definition

σ(ε) = S. (19)

Notice that such a cable cannot possibly collapse (T

is always positive) nor break. However, there are still

complications, hidden within this varying area.

Nothing prevents the area from becoming unphysi-

cally small, nor impractically large. Indeed, as h gets

smaller and smaller the maximum area (a useful proxy

for the mass of the whole cable) grows as

amax ≈ a0e
1
hα (20)

and thus for smaller α the mass of the cable must be

huge in order to reach small h, near Earth’s surface.

This huge mass can be overcome by making a0 very

small, but there we hit other physical constraints; that

at some point the cable becomes too small to produce

and/or use. If we curtail the cable at some minimum

area (and thus minimum h) this can be avoided, but in

that case there is an even better solution, a hybrid cable.
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Figure 4. The variation in area, tension and specific stress
for a cable with α = 3 extending from the Moon to geo-
stationary orbit (h = εgeo = 0.12). Solutions are shown for
a uniform area cable (green), a tapered cable (blue), and a
hybrid cable (red). Note that α = 3 is too weak to allow for
a uniform-area cable at this choice of h.

3.3. The hybrid cable - the most efficient practical

solution

As we have shown, a varying-area cable can be con-

structed, for which we need not fear breakage or collapse,

by enforcing that the cable be always at the maximum

possible tension. But, if we choose a minimum cross-

sectional area for such a cable, corresponding to a min-

imum height h, the free end is now thicker than it need

be.

The most efficient solution is one in which we start

at the Earth-end of the Spaceline with a constant area
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h < ε < ε0 ε0 < ε < ε1 ε1 < ε < 1 − r
D

a(ε) a0 a0e

(
η(h)−η(ε)

α

)
−1

a0

T (ε) GMρa0
D

[η(h) − η(ε)] αGMρa0
D

e

(
η(h)−η(ε)

α

)
−1 GMρa0

D
[η(h) − η(ε)]

σ(ε) S η(h)−η(ε)
α

S S η(h)−η(ε)
α

Table 3. The area, tension and specific stress of a hybrid area cable, stretching from a height h above the Earth’s centre to an
anchor point on the Moon. ε0 and ε1 give the positions where a cable of uniform area a0 reaches its breaking stress (above and
below the Lagrange point respectively). Note that for some combinations of α and h this may not occur (see text).

cable, as thin as is practical, which extends until the

point at which it reaches its breaking stress, then ta-

pers outwards from that point to avoid breaking. Past

the Lagrange point, close to the Moon, where the ten-

sion (and therefore the allowable area) reduces again,

there may be another section of uniform cable reaching

down to the anchor point on the Moon’s surface, though

whether this second uniform-area section is possible de-

pends on the value of h.

The area, tension and specific stress can be expressed

relatively simply in terms of h. We define ε0 and ε1 as

the points, above and below the Lagrange point, where

the cable reaches its breaking stress and starts to taper.

Thus they satisfy

η(ε0) = η(ε1) = η(h)− α (21)

where the exact values of ε0 and ε1 must be found nu-

merically for particular choices of α and h. Then, we

can find a(ε), T (ε) and σ(ε), as shown in Table 3.

Note that it is possible that ε1 > 1− r
D , in which case

there is no uniform-area section between the Lagrange

point and the Moon. This occurs when η(h) ≥ η(1 −
r
D )+α. For sufficiently high α, or large h, the cable may

never reach its breaking stress, and the most efficient

solution is just that of a uniform-area cable.

This hybrid cable, by construction, cannot break but

can collapse. In fact the same constraints (and solu-

tions) apply here as did for the uniform-area cable. As

long as h is less than ∼ 0.24, the cable will not collapse;

for larger h, other solutions such as an anchorweight can

similarly be implemented.

3.4. Comparing profiles

Figure 4 shows the area, tension and specific stress of

the three cable designs for a cable with α = 3 extending

to geostationary orbit (h = 0.12). Note that the stress

in the uniform area cable exceeds S, so a uniform-area

cable of this strength would, in reality, break. It can

clearly be seen how much switching to a hybrid cable

reduces the area (and hence the mass) of the cable, and

that a uniform area cable would be more efficient still

except that it is not sufficiently strong given this choice

of α and h.

4. PRACTICALITIES AND POSSIBILITIES

We have shown that we have the materials and tech-

nology today that are necessary to support a spaceline

construction. Now the remaining questions (of which

there are many) relate to the practical constraints on

such a construction and its potential uses.
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Figure 5. The effective length of the spaceline as a function
of the relative strength of the material. Different colours
show the solution for different values of H. The dashed
black line shows the effective length of the space elevator for
comparison. Finally the grey line shows, for reference, the
strength of the strongest mass-producible materials today.

The first question we must address is whether the mass

of cable needed to construct a spaceline is feasible, given

that it must be transported to and assembled in orbit.

The mass of the cable is simply

mcable =

∫ 1− r
D

h

Da(ε)ρdε, (22)

where the form of a(ε) will depend on the cable design.

Therefore the actual mass of the cable will depend

on the chosen cross sectional area, a0, which could vary

wildly for different purposes, and on the height above

Earth’s centre h that it extends to.

Thus it will be useful to measure the scale of the cable

in another unit, the effective length,

λ =
Vcable
a0

=
mcable

ρa0
= D

∫ 1− r
D

h

a(ε)

a0
dε. (23)

This measure tells us how long a uniform-area cable of
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cross-sectional area a0 would have to be to have total

mass mcable. Thus, the effective length λ can easily be

converted to a mass for a given a0 and ρ.

For uniform-area cables, this expression reduces to

just λ = 1−h− r
D , but for varying-area cables, λ can be-

come very large for small h. The lightest possible space-

line has an effective length of λ ∼ 0.75D. In compar-

ison, the lightest possible space elevator has λ ∼ 0.4D

(though could not be supported by modern materials).

Figure 5 shows the effective length of the spaceline,

and how it varies with α and h. We can see that for

present-day materials a spaceline could be constructed

which reaches geostationary orbit and has an effective

length of order unity.

Let’s say such a line was made of a cable with a0 =

10−7m2: its total mass would then be around 40,000 kg.

This is about twice the mass of the original lunar lander,

and would make transporting and constructing such a

cable completely plausible. The raw cost of the materi-

als and transport could be numbered in the hundreds of

millions of dollars.

Returning to Figure 5, we see that for cables which

come significantly closer to Earth the effective length

(and corresponding mass) increases rapidly. We also see

that the spaceline can be much less massive, by many

orders of magnitude, than a space elevator, although it

would be more costly to build a spaceline extending all

the way to Earth’s surface than it would be to build a

space elevator.

4.1. Why build a spaceline

This is not idle theorycrafting. Building a spaceline

would be a huge engineering challenge, stretching the

limits of current human capacity - but not exceeding

them.

Even in its most economical form, a cable with a width

only a little more than a pencil lead, it could cost billions

of dollars for material and transport - and it is hard to

quantify what extra cost such a project could incur. But

a billion dollar price tag is not unattainable - and the

possibilities of what could be done with such a structure

may quickly pay dividends.

• Cost of transport - It costs slightly less, in fuel, to

reach the spaceline than to move into a geostation-

ary orbit (see appendix B for details). Transport

along it is free - with solar powered climbing ve-

hicles. This would reduce the cost of moving to

anywhere along it’s length substantially - for ex-

ample it would reduce the fuel needed to reach the

surface of the moon to a third of the current value.

• Infrastructure - Objects in space float freely in a
truly 3 dimensional space. But when you tether

those objects to a line movement between them be-

comes a one dimensional journey. Motion between

points on the spaceline is simpler and safer than

moving, docking and navigating through empty

space.

• Haulage to and from the surface of the moon -

Small loads can be sent to and from the moon.

Whilst the moon is not the end destination of the

spaceline conceptually, it is physically. The ability

to transport material to and from deep space with-

out spaceflight changes the economics of scientific

and industrial possibilities on the lunar surface.

• The technological endeavour - An important but

easy to overlook benefit of a project such as this

is that the engineering challenges it presents, and

how overcoming them will push forward our tech-

nological capacities. A difficult but achievable task

requires us to make and master new techniques,

and rewards us for doing so.

• The Lagrange point base camp - The last item on

this list is the thing we believe to be most impor-

tant and influential for the early use of the space-

line (and for human space exploration in general).

The spaceline makes the Earth Moon Lagrange

point effectively stable. In this gravity free envi-

ronment we can construct habitats and equipment

of arbitrary mass (see appendix C). It is a pris-

tine and gravity free environment, with no great

hindrance to developing space constructions on a

scale that would seem impossible otherwise. Hav-

ing only a small team of scientists and engineers

at such a base camp would allow hand construc-

tion and maintenance of a new generation of space

based experiments - one could imagine telescopes,

particle accelerators, gravitational wave detectors,

vivariums, power generation and launch points for

missions to the rest of the solar system. Equip-

ment can be sent up in prefabricated pieces, assem-

bled, maintained and operated by hand. Previous

space stations have been constrained: by cramped

conditions and dangerous environments. In con-

trast the Lagrange point is a haven for expansion

and cultivation. It is the stepping stone from the

surface of the Earth to stepping foot on the outer

planets - and could be home to new populations,

industry and enquiry on a scale yet unknown to

us.

4.2. Last words

In this paper we hope to have presented a rational

argument for the exploration of an idea that could pay

huge dividends in it’s scientific, economic and cultural



The Spaceline 9

𝜈

𝜈

⋅ ω

𝜈

⋅ 𝜈

⋅ 𝜈⋅𝜈

ω π

Figure A1. A simple sketch of the space elevator, in a frame co-rotating with the Earth. Drawn to scale with the Earth and
the radius of geostationary orbit.

impact. It is an idea much to large to be explored in

anything but light detail in a single piece of work.

Many important questions remain unanswered, many

technological and sociological challenges stand between

the idea and it’s execution. But if the logic presented

here holds up to scrutiny it can be done. With concerted

effort and investment it may be a reality in decades,

perhaps even years.

We hope it will inspire others to question, calculate,

discuss, and to take a long view on our ambition and

path to becoming a sustainable spacefaring civilisation.
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APPENDIX

A. THE CLASSIC SPACE ELEVATOR

In this section we will quickly re-derive the expressions similar expressions to those above, but specifically in relation

to the classic space elevator. Readers may also want to refer to fuller works on the topic such as Aravind (2007) - here
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we simply map out the basic physics following the same formalism as applied to the Spaceline in the main body of the

paper.

The space elevator extends from a anchor point on Earth’s equator to above geostationary orbit. It is co-rotating

with earth, with outward centrifugal force counteracting Earth’s gravity. Figure A1 shows a sketch of this system.

The cable thus experiences an effective acceleration

geff (x) =
GM

x2
− ω2x (A1)

where ω is the rotational velocity of Earth’s surface, which (by definition) is equal to the orbital frequency at geosta-

tionary orbit:

ω =

√
GM

R3
geo

. (A2)

Using ν = x
H , the effective force (in the corotating frame) on an infinitesimal mass element with mass dm = ρadx is

dFeff =
GMρa

Rgeo

(
1

ν2
− ν
)
dν. (A3)

The tension in the cable can be found by integrating this from Earth’s surface (at ν0 = R
H ) giving

T (ν) =
GMρ

Rgeo

∫ ν

ν0

a(ν′)

(
1

ν′2
− ν′

)
dν′ (A4)

where we have set the tension at the anchor point on Earth to be zero, which minimises the overall tension in the

cable.

A.1. Constant area cable

The simplest solution, much like for the spaceline, is a uniform area cable, with a = a0.

This gives

T (ν) =
GMρa0
Rgeo

(
1

ν0
+
ν20
2
− 1

ν
− ν2

2

)
. (A5)

The maximum tension in the cable occurs at geostationary orbit (ν = 1) and beyond this point the tension reduces

as we move further from the Earth. Thus the condition for a uniform density cable not to break is T (1) < Tbreak. As

above it will be convenient to work in terms of the relative strength of the material compared to the strengths required

for the problem:

β =
RgeoS

GM
=
Rgeo
D

α (A6)

and thus the condition for the cable not to break is

β >
1

ν0
+
ν0
2
− 3

2
≈ 5. (A7)

Given that β ≈ α
10 this means that no mass producible materials are strong enough to construct such a space

elevator, though carbon nanotubes would be (see table 2 for reference).

The length of the cable could be reduced by a counterweight above geostationary orbit, and these are commonly

shown in space elevator design. However such a weight will increase the mass of the total construction, whilst reducing

how high the elevator can reach, and so we do not consider it further here.

A.2. Varying area cable

Again, as we show in Section 3.3 for the spaceline, we can make an optimal space elevator by varying the area of

the cable such that the whole length is at (or just below) the point of breaking.

From equation A4 we can see that by setting the tension equal to Tbreak = Sρa and differentiating we find

β
da

dν
= a(ν)

(
1

ν2
− ν
)

(A8)

and integrating this, letting a = a0 at ν = ν0 gives

a(ν) = a0e
1
β

(
1
ν0

+
ν2
0
2 −

1
ν−

ν2

2

)
. (A9)
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In theory we could build a cable such as this with any material, but for weak materials with small β the area (and

hence the mass of cable) becomes prohibitively large at geostationary orbit.

A.3. The optimal hybrid cable

If we seek to minimise the mass of a cable of a given material the optimal solution is a hybrid cable. This takes into

account there being some minimum producible and useful area.

Such a cable starts with a length of some minimum area a0 extending up to some ν1 where the tension becomes so

high the cable would break. From this point it tapers outwards, keeping the stress in the cable just below breaking

point. Beyond geostationary orbit the area starts to decrease, and then when it again reaches the minimum possible

area (a = a0) at ν2 we revert to a constant area cable with sufficient length to act as the counterweight.

From equation A5 we see that T (ν1) = Tbreak when

β =
1

ν0
+
ν20
2
− 1

ν1
− ν21

2
. (A10)

Between ν1 and ν2 the area still obeys equation A8 and integrating setting ν = ν1 when a = a0 gives

a(ν) = a0e
1
β

(
1
ν0

+
ν2
0
2 −

1
ν−

ν2

2

)
−1
. (A11)

Setting equation A11 equal to a0 and solving for ν yields a cubic which can be solved for ν2(> 1). Beyond this point

the tension follows

T (ν) =
GMρa0
Rgeo

(
β +

1

ν2
+
ν22
2
− 1

ν
− ν2

2

)
(A12)

and at some ν3 > ν2 the cable terminates, at the point at which T goes to zero.

For sufficiently strong materials (β >∼ 5 or equivalently α >∼ 50) the cable may never reach its breaking tension

and hence a = a0 throughout.

Summarising
a(ν) = a0 ν0 < ν < ν1 where T (ν1) = Tbreak

a0e
1
β

(
1
ν0

+
ν2
0
2 −

1
ν−

ν2

2

)
−1

ν1 < ν < ν2 where T (ν2) = Tbreak

a0 ν2 < ν < ν3 where T (ν3) = 0

0 ν > ν3.

(A13)

Figure 5 shows the effective length (see equation 23, the length of an equivalent mass cable of constant cross sectional

area) needed to construct a space elevator. The hybrid cable reduces the weight by a factor of ∼ 4 compared to a

varying area cable, and has the same mass as a uniform area cable (not shown) for sufficiently strong materials.

B. TRANSFER ORBITS

One of the most immediate appeals of constructing a spaceline is the direct saving in fuel cost for missions going to

the Lagrange point or the moon. In this section we will map out some simple calculations of the positive impact of

using the spaceline.

We will talk about cost here not in terms of a monetary value, but in mass of fuel. There are of course other costs

involved in any space bound mission, which may dwarf fuel costs, but those are beyond the scope of simple calculation.

All we can say with relevance to these costs is that they will inevitably reduce as space travel becomes more prevalent,

whilst the fuel cost gives a hard limit on the economy of space travel.

One crucial point to remember about the spaceline is that it is traversable without any energy cost. A solar-powered

climber, gripping the line with two wheels (in the simplest design) can freely move up and down the thread without

any cost in fuel.

Thus the cost of getting to all point on the spaceline is constant, except for the time it takes. Travel to and from

the moon down to geostationary orbit is effectively free.

Fuel costs can usefully be translated into the convenient physical unit, ∆v, the total change in velocity needed to

reach a certain orbit. This in turn is really a measure of the energy difference between one orbit and another, as we

trade kinetic energy for gravitational potential.

This can then be related to fuel costs via the Tsiolkovsky rocket equation:

∆v = ve ln
m

m0
(B14)
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where m is the current mass of the spaceship, m0 is the initial mass and ve is the exhaust velocity of the engines, the

speed at which each engine can expel mass.

Thus the mass of fuel needed to achieve a certain ∆v is

mF = m0 −m = m
(
e

∆v
ve − 1

)
. (B15)

B.1. Orbital manoeuvres

We will compare two orbital manoeuvres here, a Hohmann transfer orbit, taking a payload from Earth to a circular

orbit, and a spaceline transfer, bringing the same payload to the spaceline at the appropriate velocity to dock.

Both of these will be achieved by an impulsive (meaning approximately instantaneous) fuel burn at Earth, putting

the ship onto an eccentric orbit with apoapse at the desired distance from Earth. The difference between the two

orbits is seen at apoapse:

• Circular transfer: The ship is moving well below the circular velocity at apoapse, so we need to make another

impulsive burn to match the circular velocity.

• Spaceline transfer: The spaceline is moving at a speed set by the moons angular velocity, which the ship must

match with an impulsive burn. This may be an acceleration or deceleration depending on the relative velocity

which depends on distance from Earth.

To calculate the changes of velocity we will make extensive use of the Vis-Viva equation, relating the current velocity

(v) and radius (r) of the orbit to the semi-major axis (a):

v2 = GM

[
2

r
− 1

a

]
(B16)

where M is the mass of the Earth (we will ignore the mass of the moon for these calculations presently).

We will also use the fact that for an eccentric orbit the relationship between the apo and periapse radii (r±),

semi-major axis and eccentricity (e) is

r± = a(1± e). (B17)

B.2. Leaving Earth

We will consider orbits starting at the surface of the earth, i.e. r− = R, and reaching a distance from earth r+ = αR.

This allows us to calculate the energy cost in the general case and then relate it back to specific distances from Earth.

For example geostationary orbit has α ≈ 6.6, the Earth-Moon Lagrange point is at α ≈ 51 and the Moon itself is at

α ≈ 60.

We can rearrange equation B17 to find

a =
α+ 1

2
R and e =

α− 1

α+ 1
. (B18)

Thus from equation B16 the velocity needed at periapse (r− = R) for the intital transfer, an ellipse extending the

αR, is

v− = v0

√
2α

α+ 1
(B19)

where

v0 =

√
GM

R
≈ 7.9kms−1 (B20)

is a characteristic velocity of orbital maneuvers around Earth.

This ignores the effort of leaving Earth’s atmosphere (a near negligible difference in gravitational potential but

significant work done against air resistance). We will encapsulate this factor in a simple constant and leave further

analysis for other works. Let β be the approximate ∆v spent on drag forces in the atmosphere, and we will use a value

of β = 1.5kms−1 for the sake of calculations.

The rotational velocity of the Earth at the Equator is vE ≈ 0.4kms−1 and hence to leave Earth we need (∆v)E ≈
v− − vE + β.

We can also use equation B16 to find the velocity at apoapse (r+ = αR):

v+ = v0

√
2

α(α+ 1)
. (B21)
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B.3. Circular transfers

Returning once more to equation B16 we can find the velocity needed for a circular orbit at r = a = αR:

vc = v0

√
1

α
. (B22)

This is always greater than v+ and hence for a ship to be able to maintain this altitude it must perform another

burn with (∆v)+ = vc − v+.

Putting this all together we find the total ∆v needed for a stable orbit at r = αR:

(∆v)c = v0

[√
2α

α+ 1
+

√
1

α
−
√

2

α(α+ 1)

]
+ β − vE (B23)

which tends to ∼
√

2v0 + β − vE for large α.

B.4. Transfers to the spaceline

The velocity of the spaceline at a given radius is set by the orbital velocity of the moon, which has angular velocity

ωm =

√
GM

R3
m

= µ−
3
2
v0
R

(B24)

where µ ≈ 60.

Thus the velocity of the line at a distance αR from Earth is

vl = αRωm =
α

µ
3
2

v0. (B25)

At larger distances we can see that vl increases whilst v+ decreases, hence beyond some distance from Earth the line

transitions from moving slower than the ship to overtaking it. Thus the change in velocity needed at apoapse to meet

the spaceline is |vl − v+|.
This gives a total ∆v needed to dock with the spaceline of

(∆v)l = v0

[√
2α

α+ 1
+

∣∣∣∣∣ αµ 3
2

−
√

2

α(α+ 1)

∣∣∣∣∣
]

+ β − vE . (B26)

B.5. Comparing transfer manoeuvres

We can now compare the ∆v needed for a transfer to a circular orbit (equation B23) and to docking with the spaceline

(equation B26). This is shown in figure B2, where we can see that transferring to the spaceline is a significantly cheaper

way to get to any orbital radius beyond α ≈ 3. Note that the ∆v required to actually approach the moon directly is

significantly higher than shown here, as a second set of orbital manoeuvres is needed to slow down enough to orbit

and to approach the surface. Approaching the moon via the spaceline has no extra cost.

Finally we can look at the direct cost in fuel of these two maneouvers using equation B14 and a typical exhaust

velocity of ve = 3.5kms−1. We see that using the spaceline can save around 25% of the cost per launch in fuel if we

go to the most efficient point (at α ≈ 25) and then use the line itself to traverse the remaining distance for free. Even

meeting it at geostationary orbit height it is as efficient as a normal circular geostationary orbit.

Going to the Lagrange point is a similar saving (and much less operationally complex than having to navigate a

region that may soon be filled with scientific equipment).

The comparative cost of going to the moon is not well represented here, as explained previously. But using some

rough ∆v estimates we can see that the spaceline cuts the fuel cost of such a mission by approximately two thirds.

C. THE SAFELINE

We have calculated the tension and stresses on the spaceline, and showed that with modern materials it could be

constructed within the fundamental limits of the materials. Now we can extend those calculations to explore the

practical limits, the compromises that can be made to ensure the safe use of a spaceline and the constraints they

cause.
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Figure B2. ∆v needed to go from Earth to a distance αR. The cost of a transfer to a circular orbit is shown in blue, and for
docking with the spaceline in red. The vertical line shows the location of geostationary orbit (I believe it’s pure coincidence
that this is also very near where the tow lines meet).
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Figure B3. Top plot: Mass of fuel, relative to payload, needed for a circular orbit (blue) compared to docking with the spaceline
(red) using an exhaust velocity of ve = 3.5kms−1. Bottom plot: Fuel cost of the spaceline transfer compared to circular orbit.

C.1. A simple safety factor

There are two major events we wish to avoid with the spaceline:

• Breaking - if the stress at any point in the cable exceeds the breaking strength the line will snap. The highest

tension is felt at the Lagrange point, and is a function of how deep into Earth’s potential well the cable extends.
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• Collapsing - if the tension in the cable anywhere < 0 the cable cannot support itself (it is only strong in tension).

The only place where negative tension can occur is near to the surface of the moon, and this can be avoided by

a longer cable which feels a greater force throughout.

These two conditions must be balanced to build a usable cable, giving a range of possible cable lengths. If the cable

is allowed to vary in area a wider range of solutions exist, but for simplicity we will not consider them here. For

materials below a certain strength cutoff (roughly that of common carbon fibre) there are no possible cable heights for

which the cable can be constructed.

Materials such as Kevlar and Dyneema are strong enough to allow a range of solutions. We can define the relative

strength of the material, the ration of the specific strength to the typical stresses involved in the Earth-Moon system

-

α =
SD

GM
. (C27)

The specific stress in the cable follows

σ(ε) =
S

α
[η(h)− η(ε)] (C28)

where

η(ε) =
1

ε
+

µ

1− ε +
(1 + µ)ε2

2
− µε. (C29)

Here ε(= x/D) is a scaled dimensionless parameter giving the distance from the Earth, µ(= m/M) is the dimensionless

ratio of lunar mass to Earth’s and S is the breaking stress.

The cable breaks when σ(l) ≥ S (where l ≈ 0.9 is the scaled distance to the Lagrange point) and collapses if

σ(1− r
D ) ≤ 0 (where 1− r

D is the scaled distance to the surface of the Moon).

Let’s define the excess specific stress that can be applied before breaking:

σb = S − σ(l) =
GM

D
[α+ 1.6− η(h)] (C30)

and the limiting specific stress that could be removed before the cable collapses:

σc = σ
(

1− r

D

)
=
GM

D
[η(h)− 3.5] (C31)

(using η(l) ≈ 1.6 and η(1− r
D ) ≈ 3.5).

We can use the useful approximate result that far from h = 0 or h = 1, η(h) ≈ 1
h and thus for a cable with area a0

and density ρ the tension that can be added to the cable is

Tb =
GM

D
ρa0(α+ 1.6− 1

h
). (C32)

Similarly the tension that can be taken away from the cable before it collapses is

Tc =
GM

D
ρa0(

1

h
− 3.5). (C33)

Thus we can see the limit on such a material occurs for Tc = Tb = 0 where α ≈ 0.9.

To give an example using a specific candidate material for the spaceline, when α = 3.5, roughly the value for the

stronger variants of Dyneema (which also has ρ = 970kgm−3 and also using GM
D ≈ 106) we find Tb = 109a0(5.1 −

1
h )Nm−2 and Tc = 109a0( 1

h − 3.5). Thus for h ≈ 0.25 and a cable of area 10−7m2 (a suggested feasible minimal area

for the first iteration of the spaceline) Tc ≈ Tb ≈ 100N .

Another way of thinking about the above calculation is that it gives the loading weight that can be applied at the

Earth (Moon) end before the cable breaks (collapses). This means we could load over 2000kg at the Earth end of

the cable, or over 6000kg at the most fuel-efficient point to meet the spaceline (h ≈ 0.4, see section ??). At the

moon (where gravity is almost exactly one-tenth that on Earth, ≈ 1Nkg−1) this would only allow transport of weights

up to 100kg. These numbers rise quickly for stronger materials (larger α) and thicker cables (larger a0), scaling

approximately linearly with both.

This may suggest that the first proposed spaceline, with an area of 10−7m2 is of more direct relevance and use for

deep-space work, and subsequent construction (surpassing a0 > 10−6) will be of more interest for Lunar work. It is also

worth pointing out that this is an approximate calculation and a factor of two or more weight may be transportable

with carefully tweaked parameters.
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C.2. Lagrange base-camp

Building a base-camp at the Lagrange3 point is one of the most immediately useful and exciting utilities of the

spaceline. A small habitat there could house many scientists and engineers, much like the Antarctic base camp. This

would allow experimentation and construction in a near-pristine, gravity-free environment.

There are two huge advantages of fabricating and assembling structures at the Lagrange point rather than any other

stable orbit:

• No debris - The region of space between Earth and geostationary orbit is filled with the remnants of past missions

and abandoned satellites. Also, stable (and thus long-lived) fast moving orbits can exist here, raising the fear of

bombardment with naturally occurring meteoroids. The Lagrange point has been mostly untouched by previous

missions, and orbits passing through here are chaotic, greatly reducing the amount of meteoroids.

• Non-dispersive - If you drop a tool from the ISS it will seem to rapidly accelerate away from you. This is

because of the slight difference in the gravitational force felt at different distances from the Earth, leading to

orbits that quickly diverge. This makes it a difficult and dangerous place for construction. The Lagrange point

has an almost negligible gradient in gravitational force, the dropped tool will stay close at hand for a much

longer period. With small corrective thrusters or a minimal system of tethers, many objects (habitats, science

equipment or spacecraft) can be held in a stable configuration indefinitely. Space now has a ”next-door”.

Manned large-scale construction projects would become much easier to build and maintain. These could include a

new generation of significantly larger space telescopes, a network of isolated gravitational wave detectors and particle

accelerators on scales much surpassing what can feasibly be built upon Earth’s surface.

Similarly, the base camp itself can be extended, with prefabricated panels added to allow increased space for habita-

tion and experimentation. Scientific and industrial testing in vacuum or zero-gravity environments can be undertaken

over longer periods and bigger scales than previously imaginable.

There is one caveat though, the nature of the Lagrange point between the Earth is unstable. The effective potential

(in the corotating frame) is a saddle point. If an object undergoes small displacements in the tangential direction

(constant radius) the will feel a restoring force back to the Lagrange point. However, if the object wanders in the

radial direction (towards the Moon or Earth) it will be pulled more and more strongly in that direction. Thus to keep

an object at the Lagrange point indefinitely there needs to be a corrective force in the radial direction.

The spaceline naturally provides this force, and this is one of the two major reasons why constructing a spaceline

makes a Lagrange point base camp significantly easier to use and maintain. The other being that it allows material

transport easily to and from the base camp (via a spaceship carrying material from Earth, or directly from the surface

of the moon), without the need for coordinating rocket flight through a region of space that may quickly fill with

delicate habitats and scientific equipment.

In the simplest version of the safeline there can be a force of up to 100N either towards Earth or the Moon before

there is any danger of the cable breaking or collapsing.
The acceleration felt by a mass near the Lagrange point along the radial direction is approximately

a = 10
GM

D3
x (C34)

where x is the distance from the Lagrange point. Thus for a restoring force from the cable of up to 100N and a base

camp with 106kg mass, it can wander up to ∼ 400km from the exact Lagrange point. Thus it is relatively simple and

safe to ensure the base camp stays a stably near to the Lagrange point.

C.3. Other safety concerns

There are two more points that we have considered with regards to the safety of the cable - but are beyond the

scope of this paper to address here: stability and impacts.

C.3.1. Stability

Earth’s gravity anchors the end of the spaceline, always pulling it back towards straight. However the system is in

a rotating frame, and as we begin to have substantial movement of mass along the cable we will generate motion, via

the Coriolis force.

3 Often termed the L1 point, one of the five stationary points
in the restricted two-body problem
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There is no inherent damping in the systems, and due to the varying tension along the length of the cable the

propagation of waves along it’s length is not trivial to calculate.

More in depth analysis will be needed to assess whether introducing motion to the system could lead to an unstable

state, and how best this can be addressed. Depending on the magnitude of energy input steps could be taken to damp

the motion, ranging from increasing the natural damping of the cable, to solar sails or corrective thrusters.

C.3.2. Impacts

Close to gravitating bodies micrometeroids will accumulate. Though they may be almost imperceptibly small, they

could still damage or even break the cable upon impact.

The simple solution to this is to distribute the tension in the cable across multiple strands, such that one or more

can break without greatly reducing the strength of the cable.

These broken strands could theoretically then be repaired systematically, much like small damages to a railway line.

The problem can be further contained by breaking the cable up into individual spans - many strands all connected

to a terminating plate at each end - such that a breakage of one strand only affects the strength of that span, not the

cable as a whole.

To fully understand the measures that must be taken to reduce this risk the rate at which such impacts might occur

must be calculated, which is beyond the scope of this paper.
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